
Review of the Air Force Academy No.1 (36)/2018

55

HARDWARE RECONFIGURATION OF A SOC

Alexandru DINU, Adrian CRĂCIUN, Marian ALEXANDRU

Transilvania University, Braşov, Romania

(alexandru.dinu.cor@gmail.com, adrian.craciun@unitbv.ro, marian.alexandru@unitbv.ro)

DOI: 10.19062/1842-9238.2018.16.1.8

Abstract: The continuous advance of science often leaves behind devices, and makes their

usage obsolete. This can be observed, for example, in the medical domain, where the performance
of devices achieved tremendous capabilities, or in the latest increase of power of computing:

today's top-ranked smartphones are comparable in performance with the best desktop computers

of the previous decade. Therefore, significant research efforts are directed at the reusability of
current technologies by updating them according to new discoveries. Among the existing

solutions for device reusability, there are two concepts which are highly ranked: the usage of

system-on-chip devices and partial reconfigurability implementation. This paper analyzes the
benefits of using these solutions both independently and combined.

Keywords: SoC, partial reconfigurability, reusability, hardware, software, fabric area

1. INTRODUCTION

Nowadays, technology evolves faster than ever. Some of the big steps in technology are

represented by:

 the revolution in communications, where VoIP (Voice over IP) calls replace more and

more business conversations which before were held mostly through landline phones;

 the development of social networks which allows one to get connected with more than

one person simultaneously, due to the fact that a message can almost instantly reach a

receiver located in a distant region of the planet;

 the widespread access to the Internet;

 all the facilities brought by a smartphone.

Among the aspects considered when developing a new item in technology, ease of use,

performance, reduced costs, and novelty of the product are probably the most important.

These are also the aspects further considered in this paper, in which the theory and application

of two modern technological concepts relying on current technological advance in electronics

is presented: the Partial Reconfigurability of Hardware (an idea that appeared in the sixties

but was implemented in the eighties [1] and SoC (System on Chip), first SoC having

appeared in 1974 [9].

Then, in terms of the implementation methods of algorithms, the software is appreciated

for its flexibility and possibility to be easily updated, through a new release. Also, it is well-

known that, in hardware, operational latencies are significantly decreased compared to

software, therefore the algorithms run faster. Moreover, hardware equals to parallel

computing and, as long as there is available area of the implementation fabric, it can

accustom many independent functions which will not influence each other’s execution time.

The SoC combines both hardware and software, and this is the reason why this kind of device

is very appreciated.

Hardware Reconfiguration of a SOC

56

Also, partial reconfigurability proves its benefits in saving hardware area and, by making

possible the moving of an increased amount of operations from software into hardware, it

demonstrates its benefits in terms of processing speed.

2. A STUDY OF PARTIAL RECONFIGURABILITY

A reconfigurable device allows on-the-fly modification of one of his functionalities,

while the rest of its functions remain unaffected. The implementation of a project which

uses partial reconfigurability is realized in a way which is similar to the implementation

of several non-configurable projects which use the same resources. In order to create this

kind of project, hardware reconfigurable circuitry of the system (often represented by

FPGA – Field Programmable Gate Array) is split in partitions. Some partitions are

dynamically reconfigured during device operation, and some of them remain untouched

to keep other functionalities available. The last ones are called static partitions, and one of

their roles is to maintain the basic functionality of the device (i.e. for a bus slave, the

static partition contains the communication protocol, which must be always available in

order to respond to the master requests; the dynamic partition could contain different

algorithms which represent the behavior of the slave). Fig. 1 shows the way in which a

reconfigurable partition was delimited by the rest of design through the tool PlanAhead

developed by Xilinx when we implemented partial reconfigurability on Artix 7 FPGA

device.

FIG. 1. Defining a reconfigurable partition (shown by the red arrow) in Artix 7 FPGA device using PlanAhead

tool from Xilinx

One of the most important aspects is that the functions performed by the "static" partition

will not be interrupted by reconfigurations of "dynamic" partitions of circuit. That creates a lot

of advantages, some of them being in accordance with such principles as [7]:

 Reducing size of the required device to achieve a functionality, by implementing multiple

functions which don't run in parallel on the same area.

Review of the Air Force Academy No.1 (36)/2018

57

 Because of this criterion, another two positive things result: reducing cost for device

manufacturing; reducing power consumption by device while operating;

 Providing flexibility in the choices of algorithms or protocols available to an

application;

 Enabling new techniques in design security;

 Improving the reconfigured devices' fault tolerance;

 Accelerating configurable computing;

 Implementing new devices, which can't be achieved in the absence of the partial re-

configurability feature.

A proper environment to implement the principle of partial reconfigurability is

represented by SoC devices, where the device operation is split between reconfigurable

hardware and microprocessor. This way, the benefits come both from the flexibility of the

software and the rapidity and parallel operation of hardware (according with [3]).

3. SYSTEM-ON-CHIP DEVICES

In a few words, a SoC consists of both hardware and software. Analyzing the details,

according with [8], a SoC device represents an integrated circuit on whose logic fabric a

lot of electronic system components are designed, from multiple domains: digital

electronics, analog electronics, mixed-signal, radio-frequency elements and there can be

other examples as well. A SoC device can be composed by a microcontroller (or

microprocessor) and advanced peripherals such as a GPU (Graphics Processing Unit),

wireless communication modules or another coprocessor. In general, there are three

distinguishable types of SoC devices:

 systems which accommodate a microcontroller (i.e. Xplained Evaluation Kit for

ATxmega128B1 microcontroller);

 systems which accommodate a microprocessor (a widespread example is the base

board of smartphones);

 ASICs (Application Specific Integrated Circuit);

 systems which are user-configurable after their manufacturing, in order to perform a

wide range of functions (for example PSoC devices from Cypress company or the boards

which accommodate an embedded microprocessor on the FPGA fabric). The board

SoCKit - the Development Kit for New SoC Device from Terasic company [5] is a

member of the latter family of devices.

SoC devices are widely used in a lot of industry fields and for many purposes such as

manufacturing of smartphones, tablet computers, wearables, digital cameras, wireless

routers and the list can be continued (adapted after [10]).

The board mentioned before, SoCKit - the Development Kit for New SoC Device, is

built around FPGA Altera Cyclone V System-on-Chip. A rough guide for the structure of

this integrated circuit is presented in Fig. 2.

Between the two computational elements, embedded microprocessor and FPGA user-

configurable logic, high communication speeds can be achieved. One of the reasons why Altera

company (acquired by Intel Company) put the processor into the FPGA fabric is related to

software limits: the applications which are built through a program which runs on a computing

machine (in this case, the microprocessor) aren't very efficient, because these can produce an

overhead to the processor even for simple tasks. Nevertheless, in software, different programs

cannot run in parallel on the same core (however, these can run in pseudo-parallel, based on

execution threads), and this fact creates another delay in achieving responses of the programs.

Hardware Reconfiguration of a SOC

58

FIG. 2. Structure of FPGA Altera Cyclone V System-on-Chip integrated circuit drawn on an indicative

basis.

In hardware, it is possible for different algorithms to run in parallel (the condition is

that the parallel running algorithms do not share the same resources, as a memory with

only one communication port, for example), and the operations often can be implemented

more effectively than in a software solution. Here, it is necessary to be stated that there

are two major kinds of hardware implementation target devices: ASICs and FPGAs.

When there is a large production of devices (millions of items), the ASICs are more

convenient because a low price per item is achieved. The downside is that ASIC isn’t

upgradable, having a fixed structure and, thus, it can’t be updated with the evolution of

technology. A lot of devices which sometimes were bought for a huge price, aren't used

anymore now, because their technology is too old as compared to the newest discoveries

and it can't be updated. For instance, the pneumatic extradural intracranial pressure

monitor replaced in 1980 the existing device for detecting ICP (intracranial pressure)

from a site outside the dura (the outermost and toughest membrane covering the brain)

with its very complicated and fragile pressure sensors (adapted after [4]).

Furthermore, in both ASIC and FPGA devices, implementing complex algorithms

becomes a problem because too much area is used. The FPGA devices are more

expensive than ASIC devices, but these are flexible and these can be upgradable.

Bringing together software (implemented on the microprocessor, which is very flexible,

even in what concerns the configuration of the interface, and can be updated as many

times as necessary) and hardware (the FPGA, where fast operations can be done) can

represent a good solution to make a device more flexible, updatable and reconfigurable in

order to achieve dynamic, high performance, and market-request-adaptable appliances.

4. PARTIAL RECONFIGURABILITY INSIDE FPGA DEVICES

Usually, the configuration methodology of an FPGA device implies the generation of

a file called bitstream. It contains the instructions needed for specific configuration and

interconnection of logic blocks (there are two types: CLB – Configurable Logic Blocks -

and Configurable I/O blocks) inside the FPGA. Therefore, by creating only one bitstream

file for entire configurable hardware, it is considered that the gate array represents an

atomic entity (adapted after [2]).

Review of the Air Force Academy No.1 (36)/2018

59

In contrast to this idea, partial reconfigurability methodology assumes that an FPGA

device is divided in a minimum of two regions, one being called the "static" region and

the other being called the "dynamic" region. The "static" region is the FPGA part which is

configured only at start-up and after that remains untouched during device operation. The

"Dynamic region" is the FPGA part dynamically reconfigured, at multiple times, and with

different algorithm versions or with different steps of the same algorithm.

In order to implement partial reconfigurability, the following steps must be

considered: after programming the FPGA with a complete bitstream file (through this file

all logic blocks on the fabric get configured), through partial bitstreams one or more

partitions (declared "dynamic" before) can be modified in order to extend functionality of

device, as shown in Fig. 3.

FIG. 3. Schematic of how partial reconfiguration is achieved

5. DIFFERENT WAYS TO IMPLEMENT PARTIAL RECONFIGURABILITY

IN SOC

As written above, hardware partial reconfigurability allows the consecutive

implementation of different functionalities in the same FPGA partition. Hardware

configuration through partial bitstream files can be human-driven or realized automatically

by microprocessor.

In accordance with [6], there are three possible ways to configure an FPGA: from an

external configuration flash memory; with the Quartus Programmer tool; from HPS

software.

In this paper, FPGA device configuring through HPS (Hard Processor System) which

is on the same fabric was adopted. This method allows device configuration in a remote

manner, through the modification of a register by a human, or even automatically, when

the register is modified by hardware or software in SoC. In the latter situation, an

automated process with negative feedback can be implemented.

6. LOGIC DISTRIBUTION BETWEEN HARDWARE AND SOFTWARE

The information provided so far shows that using both hardware and software in a project

brings a lot of advantages. But how to split the logic of a project? Which are the parts which can

be implemented efficiently in the hardware, and which parts could be better placed in the

software? Below, some guidelines in order to answer these questions are listed.

Mainly, the hardware must contain drivers for peripherals used by designed system.

Generally, these drivers communicate with microprocessor through addressable registers by the

software; these are used as a medium were acquired data from inputs or data to be transmitted

to outputs is stored.

Hardware Reconfiguration of a SOC

60

Also, in hardware, the protocol which allows communication with the processor

(often, this communication is realized through a bus) is also implemented. Also, the

hardware can be used as a support for data processing algorithms. This way, the

algorithms could run faster, but a withdrawal is represented by the used area which, as the

other resources, is limited. If these algorithms are split in chunks, and every part of them

is consecutively downloaded through a partial bitstream file into a reconfigurable

partition on the FPGA, a big amount of fabric area is saved. In this case, a temporary

memory must be used for saving the results produced by an algorithm step in order to be

transmitted to the next algorithm step. Also, it must be mentioned that the logic which is

in charge with the interface protocol of the microprocessor (it includes registers seen by

software, too) must be maintained into the static hardware partitions. This way, registers

are always available for software usage.

The software is tasked with the running of data processing algorithms. Also, it reads

the data supplied by the hardware and sends back necessary data and commands to it.

When necessary, updating its algorithms is a very simple process, consisting in creating a

new programming file for the microprocessor.

The logic distribution concept between hardware and software is also represented in

Fig. 4.

FIG. 4. Representation of the proposed distribution of logic between hardware and software

7. EXAMPLES OF PROJECTS THE EFFICIENCY OF WHICH CAN BE

INCREASED BY USING HARDWARE RECONFIGURATION OF A SOC

CONCEPT

The main advantages of partial reconfigurability implementation in a SoC relate to area

saving, the continuity of device operation during configuration and the increased speed of

algorithm execution by moving the logic from software to hardware. Below are some

examples to demonstrate these advantages of the method.

1. A domain where partial reconfigurability can also positively influence an application is

image processing. Let’s suppose that a new version of intelligent military goggles is created.

They must adapt instantly at every light changing event: when there is only darkness, infrared

vision and thermal imaging must be activated, when a little amount of light appears, infrared

vision is partially deactivated but thermal imaging is still working, when a heat source appears,

both previous features are deactivated and an algorithm based on sound waves is activated.

Review of the Air Force Academy No.1 (36)/2018

61

The fast changing between algorithms can be achieved through partial reconfigurability.

Also, supposing that these algorithms are very complex, their implementation will occupy a

large fabric area. But great savings are realized, if these algorithms are implemented into

FPGA fabric only during their active usage.

2. Another situation where partial reconfiguration can be really useful is using it into

specialized communications terminals used by the military. Let us suppose that a device,

which must be always connected to the GSM network in order to transmit critical

information, is mounted on a fast car which gathers data from a large area. Because there

is a lot of data which must be transmitted, the best available quality of transmission

channel must be achieved. In this scope, the communication terminal must be able to fast

switch from 4G to 3G network or even to 2G network, if only the last can represent at a

given point a stable communication channel with a good signal strength. When a higher

communication protocol becomes available, the terminal should be able to switch fast to

it. Hereof, partial reconfigurability can be used, a single communication protocol being

active at a time.

3. In another case, a SoC device is attached to a robot which works in a human-

inaccessible place in order to analyze the environment. Depending on the ground type he

is moving on, the robot needs to use continuous tracks, narrow wheels, wide wheels,

climbing claws etc. Through infrared sensors, the robot captures data about ground type

and analyze it. Therefore, the code of the ground is retained into a register, and based on

it, the software is able to reconfigure the proper FPGA partition with the algorithm that

the robot must use in order to keep going on.

In the situations above, partial reconfigurability is supposed to be automatically done

by software based on specific input stimuli.

8. PROOF OF CONCEPT

To prove this concept on our side, we started to create a simple project using the board

SoCKit - the Development Kit for New SoC Device consisting of a temperature regulator.

The peripherals used are a fan driven by a simple DC motor, the DS18B20 temperature

sensor with digital output and an electronic heating element (we have chosen a BD652

integrated circuit which becomes hot due to a current of 0,2 – 0,5A which is driven to it).

A schematic of the project is shown in Fig. 5.

FIG. 5. Schematic of our project started in order to prove partial reconfigurability of a SOC concept

Hardware Reconfiguration of a SOC

62

We communicate with the digital temperature sensor DS18B20 through its 1-Wire
®

protocol. There are multiple operations which the sensor is able to accomplish [11], but

we only used the following three: writing scratchpad memory of the sensor, converting

temperature in digital representation and reading scratchpad memory of the sensor. These

operations can be realized by following the steps presented in Fig. 6.

 a) b) c)

FIG. 6. Steps which must be followed, according to the sensor protocol, in order to:

a) initiate current temperature conversion by sensor to digital representation;

b) configure resolution of the temperature acquired;

c) read the temporary memory of the sensor.

The succession of these three steps makes possible reading the temperature from sensor.

In order to communicate with both microprocessor and temperature sensor in the three

ways above, a “dynamic” hardware partition is created into FPGA, and a module for

communication with the sensor is implemented inside it. It is connected with the data line

of the temperature sensor via an input/output pin. Also, software sends commands to this

module through a communication protocol (we have chosen APB – Advance Peripheral

Bus – protocol by AMBA). In the example, the microprocessor sets a start bit which is

used for starting current operation flow and reads the finish bit which is used to signal

that the operation is finished. The start and finish bits belongs to a control register: the

start bit can be only asserted by software and it is reset in the next clock cycle and the

stop bit can be only read by software. Also, there are two more registers which can be

accessed by software: the temperature register (read only by software) which is 16 bits

width and contains valid data only when sensor memory reading operation is

implemented and the configuration register (written only by software) which is 8 bits

width and contains the resolution setting for temperature digital representation (its

resolution can be 9, 10, 11 or 12 bits). This register must contain valid data when sensor

memory writing operation is running.

Review of the Air Force Academy No.1 (36)/2018

63

Every 10 seconds, the microprocessor starts a reading temperature cycle. To do that, it

firstly configures the dynamic partition with the algorithm that contains the operation

steps for writing the scratchpad memory and assert the start signal. After finish signal

becomes logic "1", the microprocessor loads into the "dynamic" partition the algorithm

which contains the operation steps for converting temperature and monitors the finish

signal as in the previous step. The last loaded algorithm is the one which reads the

memory of the temperature sensor (called scratchpad memory). The data from the

memory is saved into scratchpad data register which is also existent on the

reconfigurable partition, but is used by hardware solely. The two least significant bytes

from the scratchpad data register contain the value of temperature, are these are therefore

copied in temperature register. After the finish signal is asserted again by the hardware,

the microprocessor reads the temperature register and, depending of the temperature

value, generates a convenient duty cycle for a PWM signal which is used to command the

simple DC motor of the fan. The driving operation of the fan is implemented into a

"static" partition of the FPGA, and this partition contains a register (written only by

hardware) which contains a code of duty cycle value (that can vary between 0% (stopped)

and 100% (full speed) with a resolution of 5%).

The heating element driver is implemented into another reconfigurable partition. The

BD652 integrated circuit (which actually represents two power transistors in Darlington

configuration) can be either heated or cooled (the cooling is realized by stopping the

current which passes the integrated circuit) by software in a specific manner programmed

by us, or the heating can be started and stopped manually through a switch (Switch 1 in

Fig. 5) which is available on the project board. Also, the decision of reconfiguring the

dynamic partition with one of the above methods is made by the software which reads a

1-bit register which is set and unset through a second switch (Switch 2 inside Fig. 5)

available on the project board.

In Fig. 7 the structure of the FPGA which also was described above is represented.

By implementing this project, we are able to prove that partial reconfiguration is a

concept that saves FPGA fabric area. Also, because the project is implemented on a SoC

device, the dynamic reconfiguration can be done automatically, through the software, in

this case creating a well-operating independent device with negative feedback.

FIG. 7. The FPGA structure used in the project; reconfigurable partitions are colored in cyan.

Hardware Reconfiguration of a SOC

64

9. CONCLUSIONS

For the increasing need of having updatable devices which are able to embed the latest

discoveries, SoC devices can be chosen as a proper environment to develop competitive

devices. And, in order to decrease logic fabric consumption, and therefore being able to

move more logic from software to hardware (thus gaining processing speed), partial

reconfigurability is always a solution which has to be considered.

This way, technological improvement will be welcomed not only by device

manufacturers, who will benefit from shorter time to market cycles, but also by developers,

who will be able to prove their concepts faster, and by end-users, who will benefit of

enlarged time periods between the acquisitions of products created for the same purpose.

REFERENCES

[1] Radunovic, Bozidar, An overview of advances in reconfigurable computing systems, Systems Sciences,

1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference on. IEEE, 1999;

[2] Ashenden, Peter J. The designer's guide to VHDL. Vol. 3. Morgan Kaufmann, 2010;

[3] Popescu, V., – Multimedia. Editura Tehnică Bucureşti, anul 2000, p.78;

[4] National Academy of Engineering and Institute of Medicine, New Medical Devices: Invention,
Development, and Use, Washington, DC: The National Academies Press, 1988, p.34;

[5] ***, Overview page for SoCKit - the Development Kit for New SoC Device, online resource accessed in

April 24, 2018, at the address http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English

&CategoryNo=205&No=816&PartNo=1;

[6] Martin, C., GSRD v13.1 - Programming FPGA from HPS, online resource accessed in April 24, 2018, at

the address https://rocketboards.org/foswiki/Documentation/GSRD131ProgrammingFPGA;

[7] Xilinx, Partial Reconfiguration User Guide (UG702), (2012), p.8, online resource accessed in April 24,

2018 at the address https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf;

[8] Daga, A., SOC (System On Chip), online resource accessed in April 24, 2018, at the address

https://techbuddiesbyajay.blogspot.ro/2017/10/soc.html;

[9] ***, 1974: Digital Watch is First System-On-Chip Integrated Circuit, online resource accessed in April

24, 2018, at the address http://www.computerhistory.org/siliconengine/digital-watch-is-first-system-on-
chip-integrated-circuit/;

[10] Neagu, C., Întrebări simple: Ce este un SoC (System on a Chip)?, online resource accessed in April 24,

2018, at the address https://www.digitalcitizen.ro/soc-system-chip;

[11] Maxim Integrated, Datasheet for the Programmable Resolution 1-Wire Digital Thermometer, online

resource accessed in April 27, 2018 at the address https://datasheets.maximintegrated.com/en/

ds/DS18B20.pdf.

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English
https://datasheets.maximintegrated.com/en/

